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Abstract

To investigate the features of Love waves in a layered functionally graded piezoelectric structure, the mathematical

model is established on the basis of the elastic wave theory, and the WKB method is applied to solve the coupled

electromechanical field differential equation. The solutions of the mechanical displacement and electrical potential

function are obtained for the piezoelectric layer and elastic substrate. The dispersion relations of Love waves are de-

duced for electric open and short cases on the free surface respectively. The actual piezoelectric layer–elastic substrate

systems are taken into account, and some corresponding numerical examples are proposed comparatively. Thus, the

effects of the gradient variation about material constants on the phase velocity, the group velocity, the coupled elec-

tromechanical factor and the cutoff frequency are discussed in detail. So the propagation behaviors of Love waves in

inhomogeneous medium is revealed, and the dispersion and the anti-dispersion are analyzed. The conclusions are

significant both theoretically and practically for the surface acoustic wave devices.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, a new-style material called functionally graded material (FGM) has come Out. Because

of the superiority over many composite materials, FGMs have been used not only in the spaceflight and

aerospace but also in electronic and electric fields. With the development of the material technology, the

functionally graded piezoelectric material (FGPM) is manufactured. To improve the efficiency and natural
life of the surface acoustic wave (SAW) devices, FGPM is considered to apply in SAW devices. Hence, the

study of wave propagation behaviors and characteristics in FGPM has become a topic of practical

importance.

Elastic wave propagation in layered piezoelectric media are given to considerable attention previously

exhibited by the literature of Pauley and Dong (1976), Shiosai et al. (1986), Siao and Dong (1994) and

Wang and Quek (2001). Furthermore, there have also been many works about wave characteristics and
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transient response of FGM structures. Liu et al. (1991a) and Liu and Tani (1992) have investigated surface

waves in FGM plates with the application of strip element method. Ohyoshi (1993, 1995) and Ohyoshi et al.

(1996) proposed an analytical method to analyze wave reflection and transmission for an FGM plate. Liu

et al. (1999) and Han et al. (2000) discussed stress waves in FGMs using linearly inhomogeneous elements
(LIEs) and quadratic layer elements, respectively. Han et al. (2001, 2002) have introduced a hybrid

numerical method (HNM) for analyzing characteristics of waves and transient responses in FGM cylinders.

Over the past decade, wave propagation problems related to FGPM have been widely studied. HNM

which combines the finite element method with the Fourier transformation method, was proposed for

characteristics and response of wave propagation in FGPM (Liu and Tani, 1991, 1994). Recently, Liu et al.

(2003) provided piezoelectricity effects on the dispersion and characteristics of waves in FGPM plates

through the introduction of LIEs. Using an analytical-numerical method, Han and Liu (2003) investigated

the frequency and group velocity dispersion behaviors, and characteristic surfaces of waves in FGPM
cylinders.

In this paper, the motion differential equations of the wave, considering that the material properties of

the FGPM guiding layer change continuously in the thickness direction, are presented to obtain the dis-

persion of Love waves. The WKB method is used to solve the coupled electromechanical field differential

equations. The dispersion relations for the electric open and short cases are formulated with the aid of the

mechanical displacement and electrical potential function. The influences of the gradient of the material

constants on the phase velocity, the group velocity, the coupled electromechanical factor and the cutoff

frequency, are clarified by some numerical simulations. Finally, the qualitative properties of Love wave
propagation in the inhomogeneous material are illustrated.

This paper presents a mathematics approximation method which has usually been called the WKB

method. The method which was first proposed in the mid-1920s by Wentzel, Kramers, Brillouin and

Jeffreys, has in reality been known for a long time. The method describes various kinds of wave motion in

an inhomogeneous medium, where the properties change only slightly over one wavelength, and it also

provides the connection between classical mechanics and quantum mechanics (Nanny and Per Olof, 2002).

The traditional WKB method has served amazingly well in a variety of problems, especially in problems of

quantum mechanics, nonuniform waveguides and atomic physics. Since the material constant of the FGPM
is nonuniform, the WKB method springs for obtaining the solution of the governing differential equations

of wave motion.
2. Statement of the problem

Consider a layered half-space of a semi-finite substrate covered with a FGPM medium on the surface,

such as shown in Fig. 1. The piezoelectric layer with a thickness h is transversely isotropic, and the elastic

substrate is isotropic. The rectangular Cartesian coordinates ðx; y; zÞ are selected so that the z-axis consisted
with the polarization direction of the piezoelectric layer and perpendicular to the x–y plane. It is assumed
that the upper surface of the guiding layer is stress free, and the substrate is bonded ideally with the layer.

Here, Love waves propagating along the y-axis are studied mainly.

For an FGPM medium, the constitutive equations are
rij ¼ cijklSkl � ekijEk

Dj ¼ ejklSkl þ ejkEk

�
; ð1Þ
where rij, Skl, Ek and Dj indicate the stress tensor, strain tensor, electric field vector and electric dis-

placement vector, respectively. cijkl, ekij and ejk, which vary continuously in the thickness direction, are the
elastic, piezoelectric and dielectric constants. The equations of motion are given by



Fig. 1. Layered FGPM half-space.
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rij;j ¼ q€ui
Di;i ¼ 0

�
; ð2Þ
where ‘‘�’’ denotes the differentiation with respect to time t , ‘‘,’’ denotes the space-coordinate differentia-
tion, while q is the density of the material, u the mechanical displacement.

The relationship between the displacement components and strain components is given by
Sij ¼ 1
2
ðui;j þ uj;iÞ: ð3aÞ
The Maxwell equations in the quasi-static approximation are
Ei ¼ �u;i; ð3bÞ
where u is the electrostatic potential. Eq. (3a) and Eq. (3b) are called geometrical equations.

For a transversely isotropic piezoelectric layer, Eq. (1) can be written as
rx ¼ c11Sx þ c12Sy þ c13Sz � e31Ez

ry ¼ c12Sx þ c11Sy þ c13Sz � e31Ez

rz ¼ c13Sx þ c13Sy þ c33Sz � e31Ez

syz ¼ c44Syz � e15Ey

szx ¼ c44Szx � e15Ex

sxy ¼
c11 � c12

2
Sxy

9>>>>>>>=
>>>>>>>;
; ð4aÞ
Dx ¼ e15Szx þ e11Ex

Dy ¼ e15Syz þ e11Ey

Dz ¼ e31Sx þ e31Sy þ e33Sz þ e33Ez

9=
;; ð4bÞ
in which the elastic constants cij, piezoelectric constants eij and dielectric constants eij ði; j ¼ 1; 2; . . . ; 6Þ are
function of x, i.e. cij � cijðxÞ; eij � eijðxÞ; eij � eijðxÞ.

It is assumed that Love waves propagate in the positive direction of y-axis, we have
u ¼ v ¼ 0; w ¼ wðx; y; tÞ; u ¼ uðx; y; tÞ: ð5Þ
Let w1 and u1 denote the mechanical displacement and electric potential function in the region
�h < x < 0, then using Eqs. (2) and (5), as well as Eqs. (3) and (4), we obtain the following field equations

for the piezoelectric layer:
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c44
@2w1

@x2
þ @2w1

@y2

� �
þ e15

@2u1

@x2
þ @2u1

@y2

� �
þ c044

@w1

@x
þ e015

@u1

@x
¼ q1

@2w1

@t2

e15
@2w1

@x2
þ @2w1

@y2

� �
� e11

@2u1

@x2
þ @2u1

@y2

� �
þ e015

@w1

@x
� e011

@u1

@x
¼ 0

9>>=
>>;; ð6Þ
where ‘‘0’’ denote the differentiation with respect to x.
Let w2 and u2 denote the mechanical displacement and electric potential function in the region x > 0.

According to the general elastic theory, the field equations for elastic substrate can be obtained as follows:
G
@2w2

@x2
þ @2w2

@y2

� �
¼ q2

@2w2

@t2

@2u2

@x2
þ @2u2

@y2
¼ 0

9>>=
>>;; ð7Þ
where G is the shear modulus. In general, the upper surface of the piezoelectric layer is in air, and the

dielectric constant e0 of air is much smaller than that of the piezoelectric medium. So air can be treated as

vacuum. Such that the electric potential function u0 for air ðx < �hÞ satisfies Laplace’s equation, i.e.

@2u0

@x2
þ @2u0

@y2
¼ 0: ð8Þ
Furthermore, we take into account the boundary and continuous conditions at the free surface and the
interface of the layer-substrate system. And two kinds of electrical boundary conditions, i.e. electrical open

and short conditions, would be considered at the top of the structure.

• At the free surface of the layer, i.e. x ¼ �h
szx
u1

Dx

szx
u1

w1

szx
u1

Dx
1ð�h; yÞ ¼ 0

ð�h; yÞ ¼ u0ð�h; yÞ
1ð�h; yÞ ¼ Dx0ð�h; yÞ

9=
; ðelectric open caseÞ
or
1ð�h; yÞ ¼ 0
ð�h; yÞ ¼ 0

�
ðelectric short caseÞ:
• At the interface of two materials, i.e. x ¼ 0
ð0; yÞ ¼ w2ð0; yÞ
1ð0; yÞ ¼ szx2ð0; yÞ
ð0; yÞ ¼ u2ð0; yÞ
1ð0; yÞ ¼ Dx2ð0; yÞ

9>>=
>>;:
• For x ! þ1, w2 ! 0, u2 ! 0. For x ! �1, u0 ! 0.
3. Solutions of the problem

Assuming the solutions of Eq. (6) as follows:
w1ðx; y; tÞ ¼ W1ðx; yÞeiðky�k0ctÞ

u1ðx; y; tÞ ¼ U1ðx; yÞeiðky�k0ctÞ

�
; ð9Þ
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and substituting Eq. (9) into Eq. (6), we obtain
c44
@2W1

@x2
þ @2W1

@y2

� �
þ c044

@W1

@x
þ 2ik0c44

@W1

@y
þ q1c

2 � c44
� �

k20W1

þe15
@2U1

@x2
þ @2U1

@y2

� �
þ e015

@U1

@x
þ 2ik0e15

@U1

@y
� k20e15U1 ¼ 0

e15
@2W1

@x2
þ @2W1

@y2

� �
þ e015

@W1

@x
þ 2ik0e15

@W1

@y
� k20e15W1

�e11
@2U1

@x2
þ @2U1

@y2

� �
� e011

@U1

@x
� 2ik0e11

@U1

@y
þ k20e11U1 ¼ 0

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ð10Þ
where k0 is the wave number for the homogeneous piezoelectric layer, and c is the phase velocity of wave

propagation, while W1ðx; yÞ and U1ðx; yÞ are the unknown functions given by
W1ðx; yÞ ¼ X1ðxÞY1ðyÞ
U1ðx; yÞ ¼ X 1ðxÞY 1ðyÞ

�
; ð11Þ
in which Y1ðyÞ � Y 1ðyÞ � Y ðyÞ. Substitution Eq. (11) into Eq. (10) leads to the following differential

equations:
c44ðxÞ X 00
1 ðxÞ þ c044ðxÞX 0

1ðxÞ=c44ðxÞ þ q1c
2k20=c44ðxÞ � k2

� �
X1ðxÞ

� 	
þe15ðxÞ X

00
1ðxÞ þ e015ðxÞX

0
1ðxÞ=e15ðxÞ � k2X 1ðxÞ

h i
¼ 0

e15ðxÞ X 00
1 ðxÞ þ e015ðxÞX

0
1ðxÞ=e15ðxÞ � k2X1ðxÞ

h i
�e11ðxÞ X

00
1ðxÞ þ e011ðxÞX

0
1ðxÞ=e11ðxÞ � k2X 1ðxÞ

h i
¼ 0

9>>>>>=
>>>>>;
; ð12Þ
Y 00ðyÞ þ 2ik0Y 0ðyÞ þ ðDk2ÞY ðyÞ; ð13Þ
where k2 ¼ k20 þ ðDkÞ2, ðDkÞ2 remains constant.

Applying the separate variable method and noting the wave propagation direction, we can obtain the

solutions of Eq. (7),
w2ðx; y; tÞ ¼ A2e
�kb2xeiðky�k0ctÞ

u2ðx; y; tÞ ¼ B2e
�kxeiðky�k0ctÞ

�
; ð14Þ
where b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2c2k

2
0=G

p
.

With the help of the third boundary condition in Section 2, the solution of the electric potential function

in vacuum is obtained from Eq. (8),
u0ðx; y; tÞ ¼ A0e
kxeiðky�k0ctÞ: ð15Þ
3.1. Assumption

One of essential features about FGMs includes the tailoring of chemical composition and microstructure

in an intentional artificial manner on basis of quantitative prediction of the profile of properties distribution

to achieve the desired function (Kawasaki and Watanabe, 1997). In practice, the improvement of piezo-

electricity is the key to fabrication of FGPMs. The powder metallurgical processing for fabricating FGPMs
is quite complicated at present, and it is difficult to estimate material property changes synchronously in

term of a certain law.
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When investigating crack in FGPMs, Wang (2003) and Ueda (2003) assumed that the variations of the

material properties are in the same proportion in order to overcome the complexity of mathematics

involved. For simplicity, we consider that the variations in material constants are independent through

the thickness. In Section 6, we can find that gradient variations of material constants have different effects
on the dispersive characteristics of waves. Through this assumption, the effects of the different material

constants on Love waves are decoupled.

3.2. Gradient variation in the piezoelectric constant

The material property vary according to the following law:
e15ðxÞ ¼ e015 expðax=hÞ; c44ðxÞ ¼ c044; e11ðxÞ ¼ e011; ð16Þ
where e015, c
0
44 and e011 are the piezoelectric, elastic and dielectric constants at x ¼ 0, respectively; a is the

gradient coefficient. Regarding a as a small parameter and substituting Eq. (16) into Eq. (12), we obtain
peðxÞX 00
1 ðxÞ þ b� peðxÞ½ �k2 � b Dkð Þ2

n o
X1ðxÞ ¼ 0

X
00
1ðxÞ � k2X 1ðxÞ ¼ �bk20e15ðxÞX1ðxÞ= e011peðxÞ

� �
9=
;; ð17Þ
where peðxÞ ¼ c044e
0
11 þ e215ðxÞ, b ¼ e011q1c

2. Using the phase integral approach,
X1ðxÞ ¼ exp

Z
/ðxÞdx

� �
; ð18Þ
then substituting this into Eq. (17), we have
peðxÞ /2ðxÞ
h

þ /0ðxÞ
i
þ b½
n

� peðxÞ�k2 � b Dkð Þ2
o
¼ 0: ð19Þ
Note that Eq. (19) is a first-order nonlinear differential equation. The asymptotically solution of / is

approximated as
/ðxÞ ¼ /0ðxÞk þ /1ðxÞ þ /2ðxÞ=k þ � � � : ð20Þ

Substituting Eq. (20) into Eq. (19) and equating the coefficients of each power of k to zero, we get an

infinite number of equations. The first three are
peðxÞ/2
0ðxÞ þ b� peðxÞ ¼ 0;

2peðxÞ/0ðxÞ/1ðxÞ þ peðxÞ/0
0ðxÞ ¼ 0;

2peðxÞ/0ðxÞ/2ðxÞ þ peðxÞ/2
1ðxÞ þ peðxÞ/0

1ðxÞ � b Dkð Þ2 ¼ 0:

:

Their solutions are obtained as follows:
/ð1Þ
0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=peðxÞ � 1

p
; /ð2Þ

0 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=peðxÞ � 1

p
;

/ð1Þ
1 ¼ /ð2Þ

1 ¼ 0;

/ð1Þ
2 ¼ � ib Dkð Þ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� peðxÞ½ �peðxÞ

p ; /ð2Þ
2 ¼ ib Dkð Þ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� peðxÞ½ �peðxÞ

p :
Recurring to the exponential transformation Eq. (18), we get
X1ðxÞ ¼ C1e
ikb1qeðxÞ þ C2e

�ikb1qeðxÞ;
where C1 and C2 are unknown constants. Furthermore, the parameter b1 and the function qeðxÞ are

given as
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b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=peð0Þ � 1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e011q1c2

c044e
0
11 þ ðe015Þ

2
� 1

s
;

qeðxÞ ¼
h

2ab1
arctan

b� 2peðxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� peðxÞ½ �peðxÞ

p
" #(

þ b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� cð Þc

p � k
2 � k20
k2

"
�

ffiffiffiffiffiffiffiffiffiffiffi
b� c
c

s #
ln 2c bð
h�

� peðxÞÞ

þ be215ðxÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpeðxÞ b� cð Þ b� peðxÞ½ �

p i
� 2ax

h

�)
;

where c ¼ c044e
0
11. The foregoing asymptotic expansion approximation is named WKB method (Ghatak

et al., 1991).

The special solution to the second equation of Eq. (12) is
X 1ðxÞ ¼ f ðxÞX1ðxÞ ¼ f ðxÞ exp
Z

/ðxÞdx
� �

:

Substituting this into Eq. (12), applying the WKB method and combining with the general solution we

obtain
X 1ðxÞ ¼ C3e
kx þ C4e

�kx þ e15ðxÞ
e011

C1e
ikb1qeðxÞ

�
þ C2e

�ikb1qeðxÞ
�
:

And Eq. (13) gives the following solution:
Y ðxÞ ¼ Ceiðk�k0Þy :
Therefore, the solution of the mechanical displacement and electric potential function for the guiding

layer in the case of the piezoelectric constant variation is
w1ðx; y; tÞ ¼ A1e
ikb1qeðxÞ þ B1e

�ikb1qeðxÞ
� �

ei ky�k0ctð Þ

u1ðx; y; tÞ ¼
e15ðxÞ
e011

A1e
ikb1qeðxÞ þ B1e

�ikb1qeðxÞ
� �

þ D1e
kx þM1e

�kx


 �
eiðky�k0ctÞ

9=
;: ð21Þ
3.3. Gradient variation in the dielectric constant

It is assumed that the dielectric constant changes continuously in the thickness direction and the material
property variation conform to the following exponential law:
e11ðxÞ ¼ e011 expðgx=hÞ; e15ðxÞ ¼ e015; c44ðxÞ ¼ c044;
where g is the gradient coefficient. In the same manner, we can obtain the solution of the mechanical
displacement and electric potential function for the layer in the case of the dielectric constant variation as

follows:
w1ðx; y; tÞ ¼ A1e
ikb1qeðxÞ þ B1e

�ikb1qeðxÞ
� �

eiðky�k0ctÞ

u1ðx; y; tÞ ¼
e015

e11ðxÞ
A1e

ikb1qeðxÞ þ B1e
�ikb1qeðxÞ

� �
þ D1e

kx þM1e
�kx


 �
eiðky�k0ctÞ

9=
;: ð22Þ
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where the function qeðxÞ is obtained in the following form:
qeðxÞ ¼ � h
gb1

arctan
b� 2�peðxÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� �peðxÞ
h i

�peðxÞ
r

2
664

3
775

8>><
>>: þ b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� cð Þc

p � k
2 � k20
k2

"
�

ffiffiffiffiffiffiffiffiffiffiffi
b� c
c

s #

� ln 2c b
���

� �peðxÞ
�
þ b e015

� �2
e�gx=h þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�peðxÞ b� cð Þ b� �peðxÞ

h ir �
þ gx

h

�9>>=
>>;
with �peðxÞ ¼ cþ e015
� �2

e�gx=h.

3.4. Gradient variation in the elastic constant

The material properties of the layer vary as the following function:
c44ðxÞ ¼ c044 expðnx=hÞ; e15ðxÞ ¼ e015; e11ðxÞ ¼ e011;
where n is the gradient coefficient. The WKB method is still applied to solve the differential equation, but

the gradient coefficient n is unnecessary to consider a small parameter. Finally the solution in the case of the

elastic constant variation is
w1ðx; y; tÞ ¼ A1e
ikb1qcðxÞ þ B1e

�ikb1qcðxÞ
� �

ekgðxÞei ky�k0ctð Þ

u1ðx; y; tÞ ¼
e015
e011

A1e
ikb1qcðxÞ þ B1e

�ikb1qcðxÞ
� �

ekgðxÞ þ D1e
kx þM1e

�kx


 �
eiðky�k0ctÞ

9=
; ð23Þ
in which the functions gðxÞ and qcðxÞ are express as
gðxÞ ¼ � 1

4k
ln b½f � pcðxÞ�pcðxÞg;

qcðxÞ ¼
h
nb1

arctan
b� 2pcðxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� pcðxÞ½ �pcðxÞ

p
" #8<

: �
"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� e015ð Þ2

e015ð Þ2

vuut #
ln 2 e015

� �2
b½

��
� pcðxÞ� þ be011c44ðxÞ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e015ð Þ2 b� e015ð Þ2

h i
pcðxÞ b� pcðxÞ½ �

r �
� nx

h

�9=
;

with pcðxÞ ¼ c44ðxÞe011 þ e015
� �2

.

4. Dispersion equation

4.1. Gradient variation in the piezoelectric constant

For the case of the electric open, substituting Eqs. (14), (15), (21) and their corresponding stress and

electric displacement components into the boundary and continuous conditions, we obtain the following
the algebraic equations about the unknown constants A1, B1, D1, M1, A2, B2 and A0:
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ib1pe � hð Þq0e � hð Þ
e011

A1e
ikb1qe �hð Þ � B1e

�ikb1qe �hð Þ� �
þ e15 � hð Þ D1e

�kh �M1e
kh

� �
¼ 0

e15 � hð Þ
e011

A1e
ikb1qeð�hÞ þ B1e

�ikb1qeð�hÞ� �
þ D1e

�kh þM1e
kh � A0e

�kh ¼ 0

e011 � D1e
�kh þM1e

khð Þ þ A0e0e�kh ¼ 0

ib1peð0Þq0eð0Þ
e011

A1e
ikb1qeð0Þ � B1e

�ikb1qeð0Þ
� �

þ e015ðD1 �M1Þ þ A2Gb2 ¼ 0

A1e
ikb1qeð0Þ þ B1e

�ikb1qeð0Þ � A2 ¼ 0

e015
e011

A1e
ikb1qeð0Þ þ B1e

�ikb1qeð0Þ
� �

þ D1 þM1 � B2 ¼ 0

e0ð�D1 þM1Þ � B2e2 ¼ 0

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

; ð24Þ
where e2 is the dielectric constant of the substrate, and the function q0eðxÞ is
q0eðxÞ ¼
1

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

peðxÞ
� 1

s(
� b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� peðxÞ½ �peðxÞ

p � k
2 � k20
k2

)
:

If there exit nontrivial solutions of Eq. (24), the determinant of the coefficient matrix of Eq. (24) must
equal to zero, i.e.
Veheh15 v2 sinhðkhÞ½ þ coshðkhÞ�½ � Gb2 sin kb1qeh0ð Þ þ Te0 cos kb1qeh0ð Þ� � Teh v0v2ð½ þ 1Þ sinhðkhÞ
þ v0ð þ v2Þ coshðkhÞ� Te0 sin kb1qeh0ð Þ½ þ Gb2 cos kb1qeh0ð Þ� þ V0Tehe015 v0 sinhðkhÞ½
þ coshðkhÞ� cos kb1qeh0ð Þ þ VehV0eh15e

0
15 sinhðkhÞ sin kb1qeh0ð Þ � TehVehe015

�
þ Te0V0eh15

�
¼ 0; ð25Þ
where
Veh ¼ eh15=e
0
11; V0 ¼ e015=e

0
11; v0 ¼ e011=e0; v2 ¼ e011=e2; eh15 ¼ e15ð�hÞ;

Teh ¼ b1peð�hÞq0eð�hÞ=e011; Te0 ¼ b1peð0Þq0eð0Þ=e011; qeh0 ¼ qeh � qe0; qeh ¼ qeð�hÞ; qe0 ¼ qeð0Þ:
In the same way we can obtain the following phase velocity equation for the electric short case
Veheh15½v2 sinhðkhÞ þ coshðkhÞ�½�Gb2 sinðkb1qeh0Þ þ Te0 cosðkb1qeh0Þ� � Teh½sinhðkhÞ þ v2 coshðkhÞ�
� ½Te0 sinðkb1qeh0Þ þ Gb2 cosðkb1qeh0Þ� þ V0Tehe015 coshðkhÞ cosðkb1qeh0Þ þ VehV0eh15e

0
15 sinhðkhÞ

� sinðkb1qeh0Þ � ðTehVehe015 þ Te0V0eh15Þ
¼ 0: ð26Þ
Eqs. (25) and (26) are called the dispersion equations of Love waves in the layered functionally graded

piezoelectric structure for the electric open and short cases, respectively. Moreover, we can readily see that

the phase velocity c is connected with the wave number (k and k0), gradient, layer thickness and material

constants.

4.2. Gradient variation in the dielectric constant

The same approach is introduced like the gradient variation of the piezoelectric constant, and the dis-

persion equations with the dielectric constant variation are expressed by
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Vehe015½v2 sinhðkhÞ þ coshðkhÞ�½�Gb2 sinðkb1qeh0Þ þ Te0 cosðkb1qeh0Þ� � Teh½ðvhv2 þ 1Þ sinhðkhÞ
þ ðvh þ v2Þ coshðkhÞ�½Te0 sinðkb1qeh0Þ þ Gb2 cosðkb1qeh0Þ� þ V0Tehe015½vh sinhðkhÞ þ coshðkhÞ�

� cosðkb1qeh0Þ þ VehV0ðe015Þ
2
sinhðkhÞ sinðkb1qeh0Þ � ðTehVeh þ Te0V0Þe015

¼ 0 ð27Þ
and
Vehe015½v2 sinhðkhÞ þ coshðkhÞ�½�Gb2 sinðkb1qeh0Þ þ Te0 cosðkb1qeh0Þ� � Teh½sinhðkhÞ þ v2 coshðkhÞ�

� ½Te0 sinðkb1qeh0Þ þ Gb2 cosðkb1qeh0Þ� þ V0Tehe015 coshðkhÞ cosðkb1qeh0Þ þ VehV0ðe015Þ
2
sinhðkhÞ

� sinðkb1qeh0Þ � ðTehVeh þ Te0V0Þe015
¼ 0; ð28Þ
where
Veh ¼ e015=e
h
11; vh ¼ eh11=e2; eh11 ¼ e11ð�hÞ; qeh0 ¼ qeh � qe0 ¼ qeð�hÞ � qeð0Þ;

Teh ¼ b1peð�hÞq0eð�hÞ=eh11; Te0 ¼ b1peð0Þq0eð0Þ=e011; peðxÞ ¼ c044e11ðxÞ þ ðe015Þ
2
;

q0eðxÞ ¼
1

b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

�peðxÞ
� 1

s8><
>: � b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b� �peðxÞ��peðxÞ

p � k
2 � k20
k2

9>=
>;:
Eqs. (27) and (28) are corresponding to the electric open and short, respectively.
4.3. Gradient variation in the elastic constant

According to the above approach, we also can obtain the dispersion equations as follows:
½ðv0 þ 1Þðv2 þ 1ÞHðkl2Þ � ðv0 � 1Þðv2 � 1ÞHðkl1Þ�½ð�TchTc0 � UchUc0 � UchGb2Þ sinðkb1qch0Þ
þ ðUchTc0 � TchUc0 � TchGb2Þ cosðkb1qch0� þ V0e015½ðv0 þ 1ÞHðkl2Þ � ðv0 � 1ÞHðkl1Þ�½Tch
� cosðkb1qch0Þ þ Uch sinðkb1qch0Þ� þ V0e015½ðv2 þ 1ÞHðkl2Þ � ðv2 � 1ÞHðkl1Þ�½ð�Uc0 � Gb2Þ

� sinðkb1qch0Þ þ Tc0 cosðkb1qch0Þ� þ V 2
0 ðe015Þ

2½Hðkl2Þ � Hðkl1Þ� sinðkb1qch0Þ � 2TchV0e015Hð2kghÞ
� 2Tc0V0e015Hð2kg0Þ
¼ 0 ð29Þ
and
½ðv2 þ 1ÞHðkl2Þ � ðv2 � 1ÞHðkl1Þ�½ð�TchTc0 � UchUc0 � UchGb2Þ sinðkb1qch0Þ þ ðUchTc0 � TchUc0

� TchGb2Þ cosðkb1qch0Þ� þ V0e015½Hðkl2Þ � Hðkl1Þ�½Tch cosðkb1qch0Þ þ Uch sinðkb1qch0Þ� þ V0e015½ðv2
þ 1ÞHðkl2Þ � ðv2 � 1ÞHðkl1Þ�½ð�Uc0 � Gb2Þ sinðkb1qch0Þ þ Tc0 cosðkb1qch0Þ� þ V 2

0 ðe015Þ
2½Hðkl2Þ

� Hðkl1Þ� sinðkb1qch0Þ � 2TchV0e015Hð2kghÞ � 2Tc0V0e015Hð2kg0Þ
¼ 0; ð30Þ
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where
Tch ¼ b1pcð�hÞq0cð�hÞ=e011; Tc0 ¼ b1pcð0Þq0cð0Þ=e011; qch0 ¼ qch � qch;

qch ¼ qcð�hÞ; qc0 ¼ qcð0Þ; l1 ¼ �hþ gh þ g0; l2 ¼ hþ gh þ g0;

gh ¼ gð�hÞ; g0 ¼ gð0Þ; Uch ¼ pcð�hÞg0ð�hÞ=e011; Uc0 ¼ pcð0Þg0ð0Þ=e011;

HðxÞ ¼ sinhðxÞ þ coshðxÞ:
Eq. (29) is for the electric open case, and Eq. (30) is for the electric short case.

4.4. Homogeneous piezoelectric layer

Note that a ¼ 0 corresponds to a homogeneous layer without change in the piezoelectric constant, under

the consideration of qeðxÞ ¼ x, k ¼ k0, hence Eq. (25) and Eq. (26) are degenerated into the dispersion
equations in a homogeneous piezoelectric layer for the electric open and short cases, respectively
#½v2 sinhðk0hÞ þ coshðk0hÞ�fGb2 sinðk0hb1Þ=½ðc44 þ #Þb1� þ cosðk0hb1Þg þ ½ðv0v2 þ 1Þ sinhðk0hÞ
þ ðv0 þ v2Þ coshðk0hÞ�½ðc44 þ #Þb1 sinðk0hb1Þ � Gb2 cosðk0hb1Þ� þ #½v0 sinhðk0hÞ þ coshðk0hÞ�
� cosðk0hb1Þ � #2 sinhðk0hÞ sinðk0hb1Þ=½ðc44 þ #Þb1� � 2#

¼ 0 ð31Þ
and
#½v2 sinhðk0hÞ þ coshðk0hÞ�fGb2 sinðk0hb1Þ=½ðc44 þ #Þb1� þ cosðk0hb1Þg þ ½sinhðk0hÞ þ v2

� coshðk0hÞ�½ðc44 þ #Þb1 sinðk0hb1Þ � Gb2 cosðk0hb1Þ� þ # coshðk0hÞ cosðk0hb1Þ � #2 sinhðk0hÞ
� sinðk0hb1Þ=½ðc44 þ #Þb1� � 2#

¼ 0; ð32Þ
where # ¼ ðe015Þ
2
=e011. The dispersion Eqs. (31) and (32) is the same as results obtained by Liu et al. (2001).

In case of qeðxÞ ¼ x and k ¼ k0, Eqs. (27) and (28) are changed into Eqs. (31) and (32). Similarly, Eqs.

(29) and (30) are simplified to Eqs. (31) and (32) in case of qcðxÞ ¼ x, gðxÞ ¼ 0 and k ¼ k0.
5. Mechanical displacements

For the electric open case, we can obtain from Eq. (24) that
B1 ¼ feA1; ð33Þ

where
fe ¼ �
e2V0 þ

e2�e0
11

e0
15

iTe0 þ Gb2ð Þ
h i

eikb1qe0 � e2
e0

e0Veh þ
e0þe0

11

eh
15

iTeh
� �

eikb1qehþkh

e2V0 þ
e2�e0

11

e0
15

ð�iTe0 þ Gb2Þ
h i

e�ikb1qe0 � e2
e0

e0Veh �
e0þe0

11

eh
15

iTeh
� �

e�ikb1qehþkh
:

According to Eq. (33), the mechanical displacement can be rewritten by
w1ðx; y; tÞ ¼ A1 eikb1qeðxÞ
�

þ fee
�ikb1qeðxÞ

�
eiðky�k0ctÞ:
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When the dielectric and elastic constants vary continuously as the exponential law, the corresponding

displacements in the layer for the electric open case can be obtained
Table

Mater

Gui

PZT

Table

Mater

Elas

SiO
w1ðx; y; tÞ ¼ A1 eikb1qeðxÞ
�

þ fee
�ikb1qeðxÞ

�
eiðky�k0ctÞ
and
w1ðx; y; tÞ ¼ A1 eikb1qcðxÞ
�

þ fce
�ikb1qcðxÞ

�
ekgðxÞeiðky�k0ctÞ;
where
fe ¼ �
e2V0 þ

e2�e0
11

e0
15

ðiTe0 þ Gb2Þ
h i

eikb1qe0 � e2
e0

e0Veh þ
e0þeh

11

e0
15

iTeh
� �

eikb1qehþkh

e2V0 þ
e2�e0

11

e0
15

ð�iTe0 þ Gb2Þ
h i

e�ikb1qe0 � e2
e0

e0Veh �
e0þeh

11

e0
15

iTeh
� �

e�ikb1qehþkh
;

fc ¼ �
e2V0 þ

e2�e0
11

e0
15

ðiTc0 þ Uc0 þ Gb2Þ
h i

eikb1qc0þkg0 � e2
e0

e0V0 þ
e0þe0

11

e0
15

ðiTch þ UchÞ
� �

eikb1qchþkghþkh

e2V0 þ
e2�e0

11

e0
15

ð�iTc0 þ Uc0 þ Gb2Þ
h i

e�ikb1qc0þkg0 � e2
e0

e0V0 þ
e0þe0

11

e0
15

ð�iTch þ UchÞ
� �

e�ikb1qchþkghþkh
:

6. Numerical examples

In order to demonstrate the influences of the gradient on the phase velocity, the group velocity, the

coupled electromechanical factor and the cutoff frequency, some simulations are proposed. And some

interesting phenomena are mentioned in the discussion of the numerical results. As a sample, the set of

FGPM layer-elastic substrate system is assumed, i.e. PZT-5H ceramic layer-SiO2 glass substrate. The
material constants for the piezoelectric layer and the elastic substrate are listed in Tables 1 and 2 (Liu et al.,

2001), respectively. In addition, the other data are also given by, h ¼ 0:003 m, e0 ¼ 8:85� 10�12 F/m.

And the following dimensionless parameters are introduced
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2 � k20 j=k20

q
; x ¼ khc=cs1; csub ¼ cs2=cs1;
where k and k0 are the wave number in the FGPM and homogeneous layers, respectively; while cs1, cs2 are
the bulk shear velocity in the homogeneous piezoelectric layer and substrate, they are given by
cs1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c044e

0
11 þ ðe015Þ

2

e011q1

s
; cs2 ¼

ffiffiffiffiffi
G
q2

s
:

1

ial constants of the piezoelectric layer

ding layer e015 (c/m2) e011 (10�10 F/m) c044 (1010 N/m2) q1 (103 kg/m3)

-5H ceramic 17.0 277.0 2.30 7.50

2

ial constants of the elastic substrate

tic substrate G (1010 N/m2) e2 (10�10 F/m) q2 (103 kg/m3)

2 glass 3.12 0.366 2.20
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6.1. Effect of gradient variation on the dispersive curves

Based on Eqs. (25)–(32), the dispersive curves for the electric open and short cases are plotted in Fig. 2.

By comparison of the dispersion relation between the FGPM and homogeneous layer in Fig. 2, it is shown
that the dispersive curves in the homogeneous system resemble those of the functionally gradient structure.

From Fig. 2a and b, it can be seen that the phase velocity starts with cs2 and as the wave number increases,

the phase velocity for the fundamental mode decreases and tends to cs1 at high wave numbers for the

FGPM and homogeneous material. For a definite wave number, the phase velocity of FGPM is slightly

larger than one of homogeneous material in Fig. 2a, whereas the opposite result is obtained in Fig. 2b. It is

observed from Fig. 2c that the dispersive curves of FGPM are not monotonous any longer, when the

gradient coefficient about the elastic constant is smaller. This can be explained through Fig. 6 in detail.

However, the dispersive curves of FGPM will be monotonous in the case of larger elastic gradient, which
are shown in Fig. 2d. Moreover, the initial phase velocity of FGPM is smaller than one of homogeneous

material in Fig. 2c and d, especially for the fundamental mode. This is due to the fact that the elasticity

effect on Love wave become stronger than the piezoelectricity effect, when the elastic constant of the pie-

zoelectric layer vary in comparison with the substrate.
Fig. 2. Dispersive curves of Love waves in FGPM and homogeneous material.



Fig. 3. Dispersive curses of Love waves in FGPM with the different gradient.
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Variations of the dispersive curves for different gradients is shown in Fig. 3. From Fig. 3a, it can be

remarked that the dispersive curves move right and the distance between the dispersion curves of each mode

increase with the order of mode increasing, when the piezoelectric constant gradient become larger. That is

to say, the phase velocity of Love waves increases with an increase of the gradient for the certain wave
number or wavelength. The adverse results are remarked in Fig. 3b. This indicates that the efficiency of

SAW devices with use of FGPM can be improved by adjusting the gradient of the piezoelectric and

dielectric constants.

The relations between the modificatory coefficient d and dimensionless frequency x for the piezoelectric

and dielectric constants variation, are shown as Fig. 4. In Fig. 4a, it can be seen that the gradient has a

strong influence on the lower frequency for the fundamental mode, but the curves flat out after a sharp

variation in a small lower frequency domain and tend to the unchangeable values in all three modes. The

similar results as Fig. 4a can be observed in Fig. 4b. At higher frequency range, the wave number of Love
waves in FGPM is 5%–5.8% greater than one in homogeneous material, while the gradient a ¼ 0:01. In
practice, the piezoelectric effects become significant for large wave number (Liu et al., 2003). Therefore, if

FGPM is applied to SAW devices, the piezoelectric effects will be prominent.



Fig. 4. Variation of the modificatory coefficient and dimensionless frequency.
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To explain intensively the dispersion relation, the group velocity cg is presented. It is well known that the

group velocity expresses the rate at which energy is transported. The group velocity is defined as (Karl, 1975

and Julius, 1978)
cg ¼ cþ k
dc
dk

:

If the group velocity is actually greater than the phase velocity, the fact is named by anti-dispersion.

From Fig. 5, it is obvious that the anti-dispersion appears in the all modes of Love waves with the pie-
zoelectric constant variation. In other words, the rate of the energy propagation exceeds that of the wave

propagation. Therefore, it is illustrated that waves will appear to originate at the rear of the group, travel to

the front and disappear (Julius, 1978). Note that, the anti-dispersion also occur in the cases of the dielectric

constant variation.

For n ¼ 0:001, the first mode of Love waves has two kinds of the phase velocity corresponding to one

wave number in the certain wave number range, which can be seen in Fig. 2c. Combining with Fig. 6, it can

be found that the first mode has both the dispersion and anti-dispersion. Therefore, it is possible that energy

propagation does not concentrates in the same direction, and a part of energy propagates in dispersion
behaviors, other part of energy in anti-dispersion behaviors. Simultaneously, negative group velocities are

seen for the certain wave number range in Fig. 6. It means that the direction in which the energy propagates



Fig. 5. The dimensionless phase velocity and dimensionless group velocity.

Fig. 6. The dimensionless group velocity in the case of the elastic gradient variation.
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is opposite to that of the wave propagation. This fact indicates that the wave propagates in the positive

direction of y-axis, but the group travels in the negative direction. The same phenomenon has been ob-

served in not only an isotropic plate (Lysmer, 1970) but also a hybrid composite laminated plate (Liu et al.,

1991b). Although the above comments are derived from the first mode, they are also applicable to other

modes.
6.2. Effect of gradient variation on the coupled electromechanical factor

The coupled electromechanical factor is an important parameter for designing acoustic sensors. And the

coupled electromechanical factor of the mth mode is defined as (Bernhard and Michael, 1997)
j2
pm ¼ 2jcpmðopenÞ � cpmðshortÞj

cpmðopenÞ
;

where cpmðopenÞ and cpmðshortÞ are phase velocities of m th mode, respectively, for the electric open and short
cases.



Fig. 7. The Coupled electromechanical factor of the fundamental mode.
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Fig. 7 show the relation between the gradient coefficients and the coupled electromechanical factor. It

can be seen that the coupled electromechanical factor may be improved by augmenting the gradient of the

dielectric constant. It means that the interaction between electrics and mechanics is enhanced in FGPM.
For the certain operating frequency of SAW devices of FGPM, as the dielectric gradient increases, the

capability of SAW devices can be improved.
6.3. Effect of gradient variation on the cutoff frequency

From Table 3, it can be found that the cutoff frequency of each mode in the homogeneous system is

smaller than that of FGPM structure, while the piezoelectric constant varies. However, the cutoff frequency

of each mode in the homogeneous system is greater than that of the functionally gradient structure, while

the dielectric constant varies. Therefore, the work frequency range of SAW devices is extended by using

FGPM with dielectric constant variation.

From Table 4, it can be seen that the cutoff frequency of each mode decreases with the elastic constant
gradient increasing. In Tables 3 and 4, the cutoff frequency for the electric short case is less than that of the
Table 3

The cutoff frequencies of the first five modes ða ¼ 0:01; g ¼ 0:01Þ
Materials Mode

1st� 106 Hz 2nd� 106 Hz 3rd� 106 Hz 4th� 106 Hz 5th� 106 Hz

Homogeneous piezoelectric layer

Open 1.4968516 2.9938514 4.4908512 5.9878510 7.4848508

Short 1.4011251 2.8947212 4.3916672 5.8886618 7.3856615

FGPM layer

e15
Open 1.4969446 2.9945435 4.4929567 5.9922626 7.4923953

Short 1.4011421 2.8950702 4.3930648 5.8920073 7.3918177

e11
Open 1.4959714 2.9910703 4.4856286 5.9798624 7.4738851

Short 1.4007325 2.8927032 4.3873594 5.8816857 7.3757758



Table 4

The cutoff frequencies of the first four modes with the elastic constant variation

Gradient Mode

1st� 106 Hz 2nd� 106 Hz 3rd� 106 Hz 4th� 106 Hz

n ¼ 0:01

Open 2.592680621 5.185617847 7.778555080 10.37149232

Short 2.420873818 5.013498937 7.606436337 10.19937411

n ¼ 0:1

Open 2.559905738 5.120077250 7.680246220 10.24041456

Short 2.387386780 4.947243077 7.507422033 10.06759579

n ¼ 0:5

Open 2.415927850 4.822488860 7.250741167 9.667916343

Short 2.239571389 4.656985237 7.074300313 9.491505967

n ¼ 1:0

Open 2.249085820 4.505907840 6.761058857 9.015793427

Short 2.068785205 4.325311763 6.580614830 8.835417607

n ¼ 2:0

Open 1.985005681 4.000357677 6.008945627 8.015866653

Short 1.801674142 3.816950143 5.825914607 7.832985520

7326 X.Y. Li et al. / International Journal of Solids and Structures 41 (2004) 7309–7328
electric open case no matter how the material constants vary. So SAW devices generally work in the electric
short case on the free surface.
7. Conclusions and discussions

From the numerical examples, the following conclusions can be drawn:

• The dispersion of Love waves in the FGPM layer results from both geometrical and physical dispersion.

The geometrical dispersion is caused by the thickness of the guiding layer, and thereby the material con-

stant variation leads to the physical dispersion. Furthermore, the anti-dispersion is a universal phenom-

enon which occurs in the inhomogeneous material.

• The coupled electromechanical factor of Love waves in FGPM structure increases, as the gradient coef-

ficient of the dielectric constant is increased. And the dielectric constant gradient is within ð0; 0:12Þ, the
coupled electro-mechanical factor has a remarkable increase.

• For the piezoelectric and elastic constants variation, the cutoff frequency of Love wave in FGPM struc-

ture is greater than that of the homogeneous structure. However, the cutoff frequency of Love wave in

FGPM structure is smaller in the dielectric constant variation.

The above conclusions are very applicable and can be expected to be utilized in design of SAW devices.

Some results are also applied to detect the material properties of the manufactured FGPMs.

The present work introduces a assumption that the variations of material constants are independent

through the thickness. Although there are differences between this assumption and reality of real FGPM,
the individual effects of different material constant on dispersion behaviors can be revealed by this

assumption. But the further studies of investigating real FGPM are needed.
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Appendix A. Analytical solution of the ordinary differential equation

The analytical solution of the first ordinary differential equation in Eq. (17) is given by
X1ðxÞ ¼ C1e
ðaQexÞ=h � F 1

�
þ Qe

2
� kh
2a

; 1þ Qe

2
þ kh
2a

; 1þ Qe; ZeðxÞ
�
peðxÞ þ C2e

�ðaQexÞ=h

� F 1

�
� Qe

2
� kh
2a

; 1� Qe

2
þ kh
2a

; 1� Qe; ZeðxÞ
�
peðxÞ; ðA:1Þ
where
Qe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c044ðc044k2 � q1c2k

2
0Þ

p
h

ac044
; ZeðxÞ ¼ � e15ðxÞ

b
:

The solution of the corresponding equation in the dielectric constant gradient variation is also expressed

by
X1ðxÞ ¼ C1e
kx � F 1

�
� Qe þ

kh
g
; 1þ Qe þ

kh
g
; 1þ 2kh

g
; ZeðxÞ

�
peðxÞ þ C2e

�kx

� F 1

�
� Qe �

kh
g
; 1þ Qe �

kh
g
; 1� 2kh

g
; ZeðxÞ

�
peðxÞ; ðA:2Þ
where
Qe ¼ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c044ðc044k2 � q1c2k

2
0Þ

p
h

gc044
; ZeðxÞ ¼ � c044e11ðxÞ

ðe015Þ
2

:

The functions F ð�; �; �; �Þ in Eqs. (A.1) and (A.2) are the hypergeometric functions.
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