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Abstract

To investigate the features of Love waves in a layered functionally graded piezoelectric structure, the mathematical
model is established on the basis of the elastic wave theory, and the WKB method is applied to solve the coupled
electromechanical field differential equation. The solutions of the mechanical displacement and electrical potential
function are obtained for the piezoelectric layer and elastic substrate. The dispersion relations of Love waves are de-
duced for electric open and short cases on the free surface respectively. The actual piezoelectric layer—elastic substrate
systems are taken into account, and some corresponding numerical examples are proposed comparatively. Thus, the
effects of the gradient variation about material constants on the phase velocity, the group velocity, the coupled elec-
tromechanical factor and the cutoff frequency are discussed in detail. So the propagation behaviors of Love waves in
inhomogeneous medium is revealed, and the dispersion and the anti-dispersion are analyzed. The conclusions are
significant both theoretically and practically for the surface acoustic wave devices.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, a new-style material called functionally graded material (FGM) has come Out. Because
of the superiority over many composite materials, FGMs have been used not only in the spaceflight and
aerospace but also in electronic and electric fields. With the development of the material technology, the
functionally graded piezoelectric material (FGPM) is manufactured. To improve the efficiency and natural
life of the surface acoustic wave (SAW) devices, FGPM is considered to apply in SAW devices. Hence, the
study of wave propagation behaviors and characteristics in FGPM has become a topic of practical
importance.

Elastic wave propagation in layered piezoelectric media are given to considerable attention previously
exhibited by the literature of Pauley and Dong (1976), Shiosai et al. (1986), Siao and Dong (1994) and
Wang and Quek (2001). Furthermore, there have also been many works about wave characteristics and
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transient response of FGM structures. Liu et al. (1991a) and Liu and Tani (1992) have investigated surface
waves in FGM plates with the application of strip element method. Ohyoshi (1993, 1995) and Ohyoshi et al.
(1996) proposed an analytical method to analyze wave reflection and transmission for an FGM plate. Liu
et al. (1999) and Han et al. (2000) discussed stress waves in FGMs using linearly inhomogeneous elements
(LIEs) and quadratic layer elements, respectively. Han et al. (2001, 2002) have introduced a hybrid
numerical method (HNM) for analyzing characteristics of waves and transient responses in FGM cylinders.

Over the past decade, wave propagation problems related to FGPM have been widely studied. HNM
which combines the finite element method with the Fourier transformation method, was proposed for
characteristics and response of wave propagation in FGPM (Liu and Tani, 1991, 1994). Recently, Liu et al.
(2003) provided piezoelectricity effects on the dispersion and characteristics of waves in FGPM plates
through the introduction of LIEs. Using an analytical-numerical method, Han and Liu (2003) investigated
the frequency and group velocity dispersion behaviors, and characteristic surfaces of waves in FGPM
cylinders.

In this paper, the motion differential equations of the wave, considering that the material properties of
the FGPM guiding layer change continuously in the thickness direction, are presented to obtain the dis-
persion of Love waves. The WKB method is used to solve the coupled electromechanical field differential
equations. The dispersion relations for the electric open and short cases are formulated with the aid of the
mechanical displacement and electrical potential function. The influences of the gradient of the material
constants on the phase velocity, the group velocity, the coupled electromechanical factor and the cutoff
frequency, are clarified by some numerical simulations. Finally, the qualitative properties of Love wave
propagation in the inhomogeneous material are illustrated.

This paper presents a mathematics approximation method which has usually been called the WKB
method. The method which was first proposed in the mid-1920s by Wentzel, Kramers, Brillouin and
Jeffreys, has in reality been known for a long time. The method describes various kinds of wave motion in
an inhomogeneous medium, where the properties change only slightly over one wavelength, and it also
provides the connection between classical mechanics and quantum mechanics (Nanny and Per Olof, 2002).
The traditional WKB method has served amazingly well in a variety of problems, especially in problems of
quantum mechanics, nonuniform waveguides and atomic physics. Since the material constant of the FGPM
is nonuniform, the WKB method springs for obtaining the solution of the governing differential equations
of wave motion.

2. Statement of the problem

Consider a layered half-space of a semi-finite substrate covered with a FGPM medium on the surface,
such as shown in Fig. 1. The piezoelectric layer with a thickness /4 is transversely isotropic, and the elastic
substrate is isotropic. The rectangular Cartesian coordinates (x, y,z) are selected so that the z-axis consisted
with the polarization direction of the piezoelectric layer and perpendicular to the x—y plane. It is assumed
that the upper surface of the guiding layer is stress free, and the substrate is bonded ideally with the layer.
Here, Love waves propagating along the y-axis are studied mainly.

For an FGPM medium, the constitutive equations are

(1)

gjj = cijk[Skl - ekijEk

Dj = ejSu + &cEx
where g, Sy, E; and D; indicate the stress tensor, strain tensor, electric field vector and electric dis-
placement vector, respectively. c;u, ex; and g;, which vary continuously in the thickness direction, are the
elastic, piezoelectric and dielectric constants. The equations of motion are given by
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Fig. 1. Layered FGPM half-space.
Tijj = pil; 2
D=0 } (2)
where -’ denotes the differentiation with respect to time ¢, ““,”” denotes the space-coordinate differentia-

tion, while p is the density of the material, # the mechanical displacement.
The relationship between the displacement components and strain components is given by

Sy = 3uiy + uj). (3a)
The Maxwell equations in the quasi-static approximation are
Ei = =9 (3b)

where ¢ is the electrostatic potential. Eq. (3a) and Eq. (3b) are called geometrical equations.
For a transversely isotropic piezoelectric layer, Eq. (1) can be written as

oy = ciSy + c128, + c13S: — es E.
o, = ci2Sy + cuSy + c138: — ez £
0. = c13Sc + i3S, + c13S. — e E:
Ty, = caaS). — ek, ’

Tox = C44Szx - elSEx
G —Cn2

‘ny - Tsxy

D, = e|55., + e E,
Dy = elSS}z + gllEy ) (4b)
D, = e3S, + €318, + e33S; + &3k,

in which the elastic constants c;;, piezoelectric constants e;; and dielectric constants ¢; (i,j = 1,2,...,6) are
function of X, ie. Cij = C,-j(x),eij = eij(x), &ij = Sl-j(x).
It is assumed that Love waves propagate in the positive direction of y-axis, we have

M:U:O; W:W(xvy7t)? ¢:(P(x7y7t)' (5)

Let w; and ¢, denote the mechanical displacement and electric potential function in the region
—h < x < 0, then using Eqgs. (2) and (5), as well as Eqgs. (3) and (4), we obtain the following field equations
for the piezoelectric layer:
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where “/”” denote the differentiation with respect to x.
Let w, and ¢, denote the mechanical displacement and electric potential function in the region x > 0.
According to the general elastic theory, the field equations for elastic substrate can be obtained as follows:

62W2 82W2 82W2

e o ) TP e

Ox dy Ot
82(/’2 62(/’2 o
ox2 02

where G is the shear modulus. In general, the upper surface of the piezoelectric layer is in air, and the
dielectric constant &, of air is much smaller than that of the piezoelectric medium. So air can be treated as
vacuum. Such that the electric potential function ¢, for air (x < —A) satisfies Laplace’s equation, i.e.
P, + P, _
Ox? oy
Furthermore, we take into account the boundary and continuous conditions at the free surface and the
interface of the layer-substrate system. And two kinds of electrical boundary conditions, i.e. electrical open
and short conditions, would be considered at the top of the structure.

(7)
0

0. (8)

o At the free surface of the layer, i.c. x = —h
Tzxl (—hJ’) = O
01(=h,y) = @o(—h,y) (electric open case)
Dxl (—h»J/) = DXO(_hvy)
or
szl(_h7y) = O

o (—h,y) = 0 } (electric short case).
1\ -

e At the interface of two materials, i.e. x =0

wi1(0,3) = w1(0,)
Taxl (Ovy) = sz2(07y)
?1(0,y) = @,(0,)
Dxl (an) = DxZ(()?y)

e For x — 400, w; — 0, ¢, — 0. For x — —o0, ¢, — 0.

3. Solutions of the problem

Assuming the solutions of Eq. (6) as follows:

w1 (x,ya t) =m (x,y)ei(ky—koct)
? (xvya t) = 431 (x,y)ei(ky‘*kocr) )
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and substituting Eq. (9) into Eq. (6), we obtain
W, O*w, , ow om
44( g + )7 ) + Cuy r + 2ikocas —— By + (P1C C44)k§Wl
o, 0P 0P, 09,
+es —21 + 21 + e 15 + 21k0€15 k2€15¢1 =0
Ox dy Ox y (10)
il +32W1 +e om + 2ik; o k m 7
e e — ke
15 2 ayz 15 (9 0€15 7 ay 15771
Fo P\, 00 o0,
811(W+ ayz > &n 8 — 2dkpey —— 6}/ +k0811€p1 =0

where k, is the wave number for the homogeneous piezoelectric layer, and c is the phase velocity of wave
propagation, while W (x,y) and @, (x,y) are the unknown functions given by

Wi(x,y) :{l(x)EO}) (11)
Py (x,y) =X1(x)Y1(») |’
in which Y;(y) =Y,(y) = Y(y). Substitution Eq. (11) into Eq. (10) leads to the following differential
equations:

cas (0){ X7 (x) + ¢y ()X (x )/044 xX) + [p17hG [can(x) — kz]Xl( )}

e1s(3) [ X () + €5 ()X (x) ers(x) — X1 ()] = 0

exs()[X7 (x) + €5 ()X, (1) ens(x) — KX )] ! (12)
—en(0)[F1(@) + &, T (/e (x) = X1 ()] = 0

Y'(y) + 2ikoY'(v) + (AR Y (), (13)

where k> = k2 + (Ak)®, (Ak)’ remains constant.
Applying the separate variable method and noting the wave propagation direction, we can obtain the
®> (xvy ’ )

solutions of Eq. (7),
k2 — p,ck3/G.

With the help of the third boundary condition in Section 2, the solution of the electric potential function
in vacuum is obtained from Eq. (8),

AQC kbvr i(ky—koct)
Bze kx k} koct)

Wz(xvy’ ) (14)

where b, =

— Agetreitohoct)

(PO(x7y7t) (15)

3.1. Assumption

One of essential features about FGMs includes the tailoring of chemical composition and microstructure
in an intentional artificial manner on basis of quantitative prediction of the profile of properties distribution
to achieve the desired function (Kawasaki and Watanabe, 1997). In practice, the improvement of piezo-
electricity is the key to fabrication of FGPMs. The powder metallurgical processing for fabricating FGPMs
is quite complicated at present, and it is difficult to estimate material property changes synchronously in
term of a certain law.
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When investigating crack in FGPMs, Wang (2003) and Ueda (2003) assumed that the variations of the
material properties are in the same proportion in order to overcome the complexity of mathematics
involved. For simplicity, we consider that the variations in material constants are independent through
the thickness. In Section 6, we can find that gradient variations of material constants have different effects
on the dispersive characteristics of waves. Through this assumption, the effects of the different material
constants on Love waves are decoupled.

3.2. Gradient variation in the piezoelectric constant

The material property vary according to the following law:
eis(x) = elsexp(ox/h), cu(x)=cl,, enlx)=2¢), (16)
where €Y., ¢}, and &), are the piezoelectric, elastic and dielectric constants at x = 0, respectively; o is the
gradient coefficient. Regarding o as a small parameter and substituting Eq. (16) into Eq. (12), we obtain
PO)X] () + {18 = pe0)] = BARY } X () = 0
X (x) — kX1 (x) = —Bikers(x)X: (x)/ [, pe(x)]

where p,(x) = ¢},&}, + el5(x), f = €}, p,c*. Using the phase integral approach,

Xi(x) = exp(/ (f)(x)dx>, (18)
then substituting this into Eq. (17), we have
Pe@)[¢() + ¢'(5)] + {18~ (o) = Blak)} = 0. (19)

Note that Eq. (19) is a first-order nonlinear differential equation. The asymptotically solution of ¢ is
approximated as

d(x) = o)k + ¢ (x) + o(x) [k + -+ - (20)

Substituting Eq. (20) into Eq. (19) and equating the coefficients of each power of k to zero, we get an
infinite number of equations. The first three are

pe(x)(b(z)(x) + :B _pe(x) = Oa

2P (x) o (x) 1 (x) + pe(x) py(x) = 0, :

20 (¥) o (x) s (x) + P (X) 1 (x) + p.(x) 1 (x) — B(Ak)* = 0.
Their solutions are obtained as follows:

¢ =iVB/p() =1, ¢F = =iv/B/p(x) — 1,

" = o7 =0,

) — PR oo — PR

L 2/B-pl® 7 2B pe@)p(x)

Recurring to the exponential transformation Eq. (18), we get

Xi(x) = Cleikblqe<x) + Cze*ikblqe(X),

(17)

where C; and C, are unknown constants. Furthermore, the parameter 5, and the function g.(x) are
given as
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9 p,c?
/ﬁ/pe \/ 11P1 .
044

811 615

_ h B — 2pe(x) B K-k _ |B-v ol
ge(x) = 2] {arctan [2 [ﬁpe(x)]pe(x)l + [2 (e . ] [ln [ZV(ﬁ pe(x))

+ Beis(x) + 24/3p.(x) (B —7)[B —pe(x)ﬂ B ZTM} }

where y = ¢,&),. The foregoing asymptotic expansion approximation is named WKB method (Ghatak
et al., 1991).
The special solution to the second equation of Eq. (12) is

1) = F0X () exp( [ o0 )

Substituting this into Eq. (12), applying the WKB method and combining with the general solution we
obtain

71 (X) = C3ek" + C4e_kx + 761; (X) [C elkbqu + C e_lkblqe )] .
11
And Eq. (13) gives the following solution:
Y(x) = Cel—hol,

Therefore, the solution of the mechanical displacement and electric potential function for the guiding
layer in the case of the piezoelectric constant variation is

wy (x,y, l) — [Alelkb]qe + Be —ikbyqe(x )]ei(ky*koﬁ)

@1 (x,p,1) = {el;(x) [4,e¥19:0) 4 e k1] 4 Dk 4 Mye ’fX} i(ky—koct)
11

(21)

3.3. Gradient variation in the dielectric constant

It is assumed that the dielectric constant changes continuously in the thickness direction and the material
property variation conform to the following exponential law:

en(x) = &, exp(nx/h),  eis(x) = e€ls,  caulx) = iy,

where 7 is the gradient coefficient. In the same manner, we can obtain the solution of the mechanical
displacement and electric potential function for the layer in the case of the dielectric constant variation as
follows:

wi(x,p,1) = [Ae*019:0) 4 Bekh14:() ] gilbr—hocr)

) = {
X, V1) =
q)l y 811(-x)

(22)

[A elkblq‘ +B e—lkblflr ] +Dlekx +M e—kx} (ky—koct)
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where the function g,(x) is obtained in the following form:

_ h ﬂ - Zﬁg(x) [ B k2 _ kg ﬁ _ /~|
¢:(x) = ———{ arctan N Lt
" 2 [ﬂ - pﬂ(x)} 7.(x) 2J/B=y)y K v

<10 (5= p0) + Be ™+ 200 ) [ - 9] | + 2

with p,(x) =y + (e(l)s)ze’”x/”.

3.4. Gradient variation in the elastic constant

The material properties of the layer vary as the following function:
cu®) = dlyexp(&/h), es(x) = ey, en(x) =),

where & is the gradient coefficient. The WKB method is still applied to solve the differential equation, but
the gradient coefficient ¢ is unnecessary to consider a small parameter. Finally the solution in the case of the
elastic constant variation is

W (X,)G t) — [Alei”"qu + Blefikblqe(X)]ekg(X)ei(kyfkoct)
(23)

0

0

e . . . 5 .

o, (x7y’ t) _ { 815 I:Alelkblq(‘ (x) + Bleflkblqc()»)] ekg(x) Dlekx Mlekx}e1(ky_koct)
11

in which the functions g(x) and ¢.(x) are express as

8(x) =~ g2 {15~ plolp o),

h
qgc(x) = a

arctan [

B — 2p.(x) ]_P

T 1 n | 2(é I — pelx 9 Caa(x
2v/[B = pe(x)]pe(x) H [( )7 (B = pe(x)] + e caa(x)

i 2\/(6?5)2 8= (ehs)?| o)1 - pc(x)]} - ﬂ

with p.(x) = caa ()6, + (¢25)”.

4. Dispersion equation
4.1. Gradient variation in the piezoelectric constant
For the case of the electric open, substituting Eqgs. (14), (15), (21) and their corresponding stress and

electric displacement components into the boundary and continuous conditions, we obtain the following
the algebraic equations about the unknown constants 4;, By, Dy, M,, A>, B, and Ay:
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ib1pe( = h)q.(—h)

0 [Aleikblq"(_h) — Ble_ikb”k(_h)] + 615( — ]’l) (Dle_kh — Mlekh) =0
en
—h ) ) '
e15(0 ) [Alelkblqe(fh) +Bleflkb1qe(fh):| + D 4 Mt — e =0
en
& (= Die ™™ + Mie!) + Agge™ =0
ib1p.(0)q" (0 ) . , 24
101D, (gﬂ)qe( ) [Alezkblqe(o) _Ble—lkblqe(o)] +e?5(D1 — M) + 4,Gby = 0 (24)
11

Aleikblqe(o) + Ble—ikblqe(o) —4,=0

0
% [4,&#19:0) 4 By #19:0)] 4 Dy 4 My — By = 0
11

80(—D1 +M1) — 3282 =0

where ¢, is the dielectric constant of the substrate, and the function ¢/ (x) is

q,(x) = b

1 { B B s —ké}
v V) 2VB-p@lplx) K[

If there exit nontrivial solutions of Eq. (24), the determinant of the coefficient matrix of Eq. (24) must
equal to zero, i.e.

Vouels [y, sinh(kh) + cosh(kh)][ — Gba sin (kbiGeno) + Too €08 (kb1Geno)] — Tonl (2012 + 1) sinh(kh)
+ (1o + 12) cosh(kh)|[Too sin (kbigeno) + Gba cos (kbigeno )] + VoTune's[xo sinh(kh)
+ cosh(kh)] cos (kbiqeno) + VerVoe|sels sinh(kh) sin (kbigeo) — (T Vanels + TuoVoe's)
=0, (25)
where
Vo = €is/elr, Vo=¢s/el,  10=7el/eo, 12=en/62 €ls=es(=h),
T = bipe(=h)q,(=h) /&)y, Teo = bi1pe(0)4,(0) /€11 Gero = Ger — 4o Gen = qe(—h),  qo = qo(0).
In the same way we can obtain the following phase velocity equation for the electric short case
Ve[ sinh(kh) + cosh(kh)][—Gby sin(kbigeno) + Teo cos(kbigeno)] — Ton[sinh(kh) + y, cosh(kh)]
X [Tu sin(kbiquo) + Gby cos(kbiqo)] + VoTunels cosh(kh) cos(kbiqen) + VanVoelsels sinh(kh)
x sin(kbiqeno) — (T Vare)s + TuVoels)
= 0. (26)

Egs. (25) and (26) are called the dispersion equations of Love waves in the layered functionally graded
piezoelectric structure for the electric open and short cases, respectively. Moreover, we can readily see that
the phase velocity ¢ is connected with the wave number (k and k), gradient, layer thickness and material
constants.

4.2. Gradient variation in the dielectric constant

The same approach is introduced like the gradient variation of the piezoelectric constant, and the dis-
persion equations with the dielectric constant variation are expressed by
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Vae)sli sinh(kh) + cosh(kh)|[—Gb sin(kby o) + Tho cos(kbiquo)] — Tun[(2512 + 1) sinh(kh)

+ ( + 72) cosh(kh)][Tyo sin(kbigeno) + Gby €08 (kb quo)] + VoTues [y, sinh(kh) + cosh(kh))]
x cos(kbiq.mo) + VchVO(e(l)s)z sinh(kh) sin(kb1ga0) — (T Vi + TooVp)els

“ 1)
and
Vise)sla sinh (kh) + cosh (k)] Gbz sin(kbiguin) + T cos(kbiqun)] — Tu[sinh(kh) + 75 cosh(kh)]
X [T sin(kbiguo) + Gba cos(kbigun)] + VoTuels cosh(kh) cos(kbigun) + VirVo(efs)” sinh (k)
x sin(kbiquo) — (T Vi + TooVo)els
" 28)
where

Vin = 6(1)5/8;1'17 An = gllll/gb 8?1 = 811(7}’)7 qen0 = qen — 4:0 = qs(*h) - qH(O),

Ty = bip (=), (=) /&1, To = bip(0)g(0) /e, pu(x) = clyen (x) + (€])’,

, 1 B K2 — K2
7.5 =5 °

AVe®  2VB-aeRe  #

Eqgs. (27) and (28) are corresponding to the electric open and short, respectively.

4.3. Gradient variation in the elastic constant

According to the above approach, we also can obtain the dispersion equations as follows:

(o + V)2 + DH (kl2) — (o — 1) (o = DH(KID)][(—=TenTeo — UanUeo — UenGbs) sin(kbiqeno)
+ (UaTeo — T Ueo — TenGb) cos(kbrgeno) + Voels[ (o + 1)H (kly) — (o — V)H (kIy)) [T
x co8(kbiqeno) + Ue sin(kbigen)] + Voels[ (1o + V) H (kl2) — (, — 1) H (kI1)][(=U.o — Gbs)
x sin(kbyqeno) + Too €OS(kbyqeno)] + V2 (V5 [H (kly) — H (kiy)] sin(kbygeno) — 2To Voe'sH (2kgy,)
— 2T VoelsH (2kgo)
=0 (29)
and
(2 + DH (kL) — (p = VH (kI)][(= T Teo — UanUeo — UenGbs) sin(kbiqeno) + (UenToo — TenUeo
— T04Gby) cos(kbigeio)] + Voels[H (k) — H (kI))][Tn co8(kbigero) + Ues sin(kbigeio)] + Voels[(x2
+ D)H(kl>) = (1 = DH (K1)][(=Usg — Gba) sin(kbigeio) + Teo cos(kbigeno)] + Vi (€]5)* [H (k1)
— H(kl))] sin(kbigeno) — 2T VoelsH (2kgy) — 2T Voe)sH (2kg)
—0, (30)
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where
T = bipe(=h)q,(=h) /&1, Teo = bipe(0)q,(0)/e}1,  qeno = Gen — Gy
Gen = qe(=h); G0 =qc(0), Lh=—h+g +g, L=h+g+g,
g =8(=h), g =2g(0), Us=p(-h)g(=h)/e\, Ua=p(0)g'(0)/e},
H(x) = sinh(x) 4 cosh(x).

Eq. (29) is for the electric open case, and Eq. (30) is for the electric short case.

4.4. Homogeneous piezoelectric layer

Note that o = 0 corresponds to a homogeneous layer without change in the piezoelectric constant, under
the consideration of ¢.(x) = x, k = ko, hence Eq. (25) and Eq. (26) are degenerated into the dispersion
equations in a homogeneous piezoelectric layer for the electric open and short cases, respectively

Y[y, sinh(koh) + cosh(koh)|{ Gb, sin(kohby)/[(cas + V)b1] + cos(kohb1)} + [(xox» + 1) sinh(koh)
+ (%0 + 212) cosh(koh)][(caq + )by sin(kohb;) — Gb, cos(kohby)] + Iy, sinh(koh) + cosh(koh)]
x cos(kohb,) — 9* sinh(koh) sin(kohb,)/[(cas + 9)by] — 20
=0 (31)

and
Iy, sinh(koh) + cosh(koh)|{Gb, sin(kohby)/[(cas + ¥)b1] + cos(kohb1)} + [sinh(koh) + x»
x cosh(koh)][(cas + )by sin(kohb,) — Gby cos(kohby )] + ¥ cosh(koh) cos(kohb, ) — 9* sinh (koh)
% sin(kohb)/[(cas + 9)by] — 20
—0, (32)

where ¢ = (e‘l)s)2 /&),. The dispersion Egs. (31) and (32) is the same as results obtained by Liu et al. (2001).
In case of ¢.(x) = x and k = ko, Egs. (27) and (28) are changed into Egs. (31) and (32). Similarly, Egs.
(29) and (30) are simplified to Egs. (31) and (32) in case of g.(x) =x, g(x) =0 and k = k.

5. Mechanical displacements

For the electric open case, we can obtain from Eq. (24) that
Bl = CeAla (33)

where

0
‘n

. . g+, . .
{82V0 + (iT + sz)} el — 2 (80 Ven + 5" lTeh)elkb“’"”kh
15

_ 5
Ce - ?] &0+

{SzVo + 2 (—iTy + sz)} e kg — 2 (80 Ven —

£

&H—
0
‘l

0 : .
i l'Teh) e~ ikbigen+kh

0 T
‘s ‘s

According to Eq. (33), the mechanical displacement can be rewritten by

wi(x,,1) = A4, [eikblqe(x) 4 é’ee*ikblfk(x)]ei(ky*kom.
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When the dielectric and elastic constants vary continuously as the exponential law, the corresponding
displacements in the layer for the electric open case can be obtained

wq (x7y, t) = Al [ ikby g (x + g e—lkblq;( )}ei(ky—koct)
and

Wi,y 1) = Ay [H00) | £ emik01ac)] ghetolgithy—hact)

-

[82% +

where

& +s" . :
(1]-;0 + sz)} elkbign _ 5_2 (80[/ f’eo 11 ITSh)elkblqgh+kh
15

Cezi

+8h . : 9’
v é (_1T£0 =+ sz)]e 190 — 2 (%Vsh o lTah)ef'kb‘q‘”kh
15

[QVO (cho + U+ sz)} eikb1gc0tkgo _ 6_2 ( (chh + U, )) e\kb1qen-tkgn+kh

Cc:_

[ano + % (—cho +Uo+ sz)} e-ikbiaa+hn _ 2 ( i (=i + Uch))efikblchkw%

6. Numerical examples

In order to demonstrate the influences of the gradient on the phase velocity, the group velocity, the
coupled electromechanical factor and the cutoff frequency, some simulations are proposed. And some
interesting phenomena are mentioned in the discussion of the numerical results. As a sample, the set of
FGPM layer-elastic substrate system is assumed, i.e. PZT-5H ceramic layer-SiO, glass substrate. The
material constants for the piezoelectric layer and the elastic substrate are listed in Tables 1 and 2 (Liu et al.,
2001), respectively. In addition, the other data are also given by, # = 0.003 m, ¢, = 8.85 x 1072 F/m.

And the following dimensionless parameters are introduced

5 = \/ ‘kZ - k§|/k§7 w = khc/csla Csub = Cs2/cs17

where k and kj are the wave number in the FGPM and homogeneous layers, respectively; while ¢y, ¢, are
the bulk shear velocity in the homogeneous piezoelectric layer and substrate, they are given by

0 .0

Caulyy + 615 _
SIS R =
&P

Table 1

Material constants of the piezoelectric layer
Guiding layer &) (c/m?) &%, (107'° F/m) ¢y, (10'° N/m?) p; (10 kg/m?)
PZT-5H ceramic 17.0 277.0 2.30 7.50

Table 2

Material constants of the elastic substrate
Elastic substrate G (10" N/m?) & (1071° F/m) p, (10° kg/m?)

SiO, glass 3.12 0.366 2.20
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6.1. Effect of gradient variation on the dispersive curves

Based on Egs. (25)—(32), the dispersive curves for the electric open and short cases are plotted in Fig. 2.
By comparison of the dispersion relation between the FGPM and homogeneous layer in Fig. 2, it is shown
that the dispersive curves in the homogeneous system resemble those of the functionally gradient structure.
From Fig. 2a and b, it can be seen that the phase velocity starts with ¢, and as the wave number increases,
the phase velocity for the fundamental mode decreases and tends to ¢, at high wave numbers for the
FGPM and homogeneous material. For a definite wave number, the phase velocity of FGPM is slightly
larger than one of homogeneous material in Fig. 2a, whereas the opposite result is obtained in Fig. 2b. It is
observed from Fig. 2c that the dispersive curves of FGPM are not monotonous any longer, when the
gradient coefficient about the elastic constant is smaller. This can be explained through Fig. 6 in detail.
However, the dispersive curves of FGPM will be monotonous in the case of larger elastic gradient, which
are shown in Fig. 2d. Moreover, the initial phase velocity of FGPM is smaller than one of homogeneous
material in Fig. 2c and d, especially for the fundamental mode. This is due to the fact that the elasticity
effect on Love wave become stronger than the piezoelectricity effect, when the elastic constant of the pie-
zoelectric layer vary in comparison with the substrate.

Homogeneous: FGPM:(«=0.01) Homogeneous:
----open —-=- ——open ------ short

| FGPM:(£=0.001)

——open ------ short —=-open ——-—

Dimensionless Phase Velocity cplcsl

Dimensionless Phase Velocity el

(b) Dimensionless Wave Number kh (d) Dimensionless Wave Number kh

Fig. 2. Dispersive curves of Love waves in FGPM and homogeneous material.
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[ERRERE u=0.1 ] [----o=02]

Dimensionless Phase Velocity cp/cSl

N
o

Dimensionless Phase Velocity cp/cSl

(b) Dimensionless Wave Number kh

Fig. 3. Dispersive curses of Love waves in FGPM with the different gradient.

Variations of the dispersive curves for different gradients is shown in Fig. 3. From Fig. 3a, it can be
remarked that the dispersive curves move right and the distance between the dispersion curves of each mode
increase with the order of mode increasing, when the piezoelectric constant gradient become larger. That is
to say, the phase velocity of Love waves increases with an increase of the gradient for the certain wave
number or wavelength. The adverse results are remarked in Fig. 3b. This indicates that the efficiency of
SAW devices with use of FGPM can be improved by adjusting the gradient of the piezoelectric and
dielectric constants.

The relations between the modificatory coefficient 6 and dimensionless frequency w for the piezoelectric
and dielectric constants variation, are shown as Fig. 4. In Fig. 4a, it can be seen that the gradient has a
strong influence on the lower frequency for the fundamental mode, but the curves flat out after a sharp
variation in a small lower frequency domain and tend to the unchangeable values in all three modes. The
similar results as Fig. 4a can be observed in Fig. 4b. At higher frequency range, the wave number of Love
waves in FGPM is 5%-5.8% greater than one in homogeneous material, while the gradient o = 0.01. In
practice, the piezoelectric effects become significant for large wave number (Liu et al., 2003). Therefore, if
FGPM is applied to SAW devices, the piezoelectric effects will be prominent.
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Fig. 4. Variation of the modificatory coefficient and dimensionless frequency.

To explain intensively the dispersion relation, the group velocity ¢, is presented. It is well known that the
group velocity expresses the rate at which energy is transported. The group velocity is defined as (Karl, 1975
and Julius, 1978)

cg=c+ k%

If the group velocity is actually greater than the phase velocity, the fact is named by anti-dispersion.
From Fig. 5, it is obvious that the anti-dispersion appears in the all modes of Love waves with the pie-
zoelectric constant variation. In other words, the rate of the energy propagation exceeds that of the wave
propagation. Therefore, it is illustrated that waves will appear to originate at the rear of the group, travel to
the front and disappear (Julius, 1978). Note that, the anti-dispersion also occur in the cases of the dielectric
constant variation.

For ¢ = 0.001, the first mode of Love waves has two kinds of the phase velocity corresponding to one
wave number in the certain wave number range, which can be seen in Fig. 2c. Combining with Fig. 6, it can
be found that the first mode has both the dispersion and anti-dispersion. Therefore, it is possible that energy
propagation does not concentrates in the same direction, and a part of energy propagates in dispersion
behaviors, other part of energy in anti-dispersion behaviors. Simultancously, negative group velocities are
seen for the certain wave number range in Fig. 6. It means that the direction in which the energy propagates
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Fig. 5. The dimensionless phase velocity and dimensionless group velocity.
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Fig. 6. The dimensionless group velocity in the case of the elastic gradient variation.

is opposite to that of the wave propagation. This fact indicates that the wave propagates in the positive
direction of y-axis, but the group travels in the negative direction. The same phenomenon has been ob-
served in not only an isotropic plate (Lysmer, 1970) but also a hybrid composite laminated plate (Liu et al.,
1991b). Although the above comments are derived from the first mode, they are also applicable to other
modes.

6.2. Effect of gradient variation on the coupled electromechanical factor

The coupled electromechanical factor is an important parameter for designing acoustic sensors. And the
coupled electromechanical factor of the mth mode is defined as (Bernhard and Michael, 1997)

2 2|Cpm(open) - Cpm(short)|

m 9
b Cpm(open)

where Cpm(open) aNd Cpmshort) are phase velocities of m th mode, respectively, for the electric open and short
cases.
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Fig. 7. The Coupled electromechanical factor of the fundamental mode.

Fig. 7 show the relation between the gradient coefficients and the coupled electromechanical factor. It
can be seen that the coupled electromechanical factor may be improved by augmenting the gradient of the
dielectric constant. It means that the interaction between electrics and mechanics is enhanced in FGPM.
For the certain operating frequency of SAW devices of FGPM, as the dielectric gradient increases, the
capability of SAW devices can be improved.

6.3. Effect of gradient variation on the cutoff frequency

From Table 3, it can be found that the cutoff frequency of each mode in the homogeneous system is
smaller than that of FGPM structure, while the piezoelectric constant varies. However, the cutoff frequency
of each mode in the homogeneous system is greater than that of the functionally gradient structure, while
the dielectric constant varies. Therefore, the work frequency range of SAW devices is extended by using
FGPM with dielectric constant variation.

From Table 4, it can be seen that the cutoff frequency of each mode decreases with the elastic constant
gradient increasing. In Tables 3 and 4, the cutoff frequency for the electric short case is less than that of the

Table 3
The cutoff frequencies of the first five modes (« = 0.01, = 0.01)
Materials Mode
Ist x 10® Hz 2nd x 10° Hz 3rd x 10° Hz 4th x 10° Hz 5th x 10° Hz
Homogeneous piezoelectric layer
Open 1.4968516 2.9938514 4.4908512 5.9878510 7.4848508
Short 1.4011251 2.8947212 4.3916672 5.8886618 7.3856615
FGPM layer
€1s
Open 1.4969446 2.9945435 4.4929567 5.9922626 7.4923953
Short 1.4011421 2.8950702 4.3930648 5.8920073 7.3918177
&1
Open 1.4959714 2.9910703 4.4856286 5.9798624 7.4738851

Short 1.4007325 2.8927032 4.3873594 5.8816857 7.3757758
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Table 4

The cutoff frequencies of the first four modes with the elastic constant variation
Gradient Mode

Ist x 10° Hz 2nd x 10° Hz 3rd x 10° Hz 4th x 10° Hz

£=0.01
Open 2.592680621 5.185617847 7.778555080 10.37149232
Short 2.420873818 5.013498937 7.606436337 10.19937411
&=0.1
Open 2.559905738 5.120077250 7.680246220 10.24041456
Short 2.387386780 4.947243077 7.507422033 10.06759579
£=05
Open 2.415927850 4.822488860 7.250741167 9.667916343
Short 2.239571389 4.656985237 7.074300313 9.491505967
&=1.0
Open 2.249085820 4.505907840 6.761058857 9.015793427
Short 2.068785205 4.325311763 6.580614830 8.835417607
£=20
Open 1.985005681 4.000357677 6.008945627 8.015866653
Short 1.801674142 3.816950143 5.825914607 7.832985520

electric open case no matter how the material constants vary. So SAW devices generally work in the electric
short case on the free surface.

7. Conclusions and discussions
From the numerical examples, the following conclusions can be drawn:

e The dispersion of Love waves in the FGPM layer results from both geometrical and physical dispersion.
The geometrical dispersion is caused by the thickness of the guiding layer, and thereby the material con-
stant variation leads to the physical dispersion. Furthermore, the anti-dispersion is a universal phenom-
enon which occurs in the inhomogeneous material.

e The coupled electromechanical factor of Love waves in FGPM structure increases, as the gradient coef-
ficient of the dielectric constant is increased. And the dielectric constant gradient is within (0, 0.12), the
coupled electro-mechanical factor has a remarkable increase.

e For the piezoelectric and elastic constants variation, the cutoff frequency of Love wave in FGPM struc-
ture is greater than that of the homogeneous structure. However, the cutoff frequency of Love wave in
FGPM structure is smaller in the dielectric constant variation.

The above conclusions are very applicable and can be expected to be utilized in design of SAW devices.
Some results are also applied to detect the material properties of the manufactured FGPMs.

The present work introduces a assumption that the variations of material constants are independent
through the thickness. Although there are differences between this assumption and reality of real FGPM,
the individual effects of different material constant on dispersion behaviors can be revealed by this
assumption. But the further studies of investigating real FGPM are needed.
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Appendix A. Analytical solution of the ordinary differential equation

The analytical solution of the first ordinary differential equation in Eq. (17) is given by

_ (2Qex) /1 % _ @ % @ . . —(2Qex)/h
X](X) C]e F<1+ 7 20(71+ D +2a,1+Qe,Ze(x) pe(x)+c2e
Q. kh Q. kh .
X F(l 2 20{7 2 + 20(, 1 Qe7Ze(x) pe(x)7 (Al)
where
0, - Ve (k2 — p k)R 20 = _e1s(x).

0
ACyy

The solution of the corresponding equation in the dielectric constant gradient variation is also expressed
by

kh kh 2kh
Xi(x) = Ce .F<1 -0, +;,1 + 0. +;; 1 +’1;Zg(x)>p£(x) + Ce ™™
kh kh 2kh
xF(l—QE——,I—i-QC——;l——;Zg(x)>ps(x), (A.2)
n n n
where
0 (12— p 2k 0
0, =3+ \/044(044 : p1cks) L Z(x) = _C448011(;C).
MNCa4 (els)

The functions F(e, e;e;e) in Eqs. (A.1) and (A.2) are the hypergeometric functions.
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